Framework for defining the scope of cumulative adverse effects assessments for offshore wind

Wing Goodale Senior Science Director, Biodiversity Research Institute

Definition Problems

- 2007 Collaborative Offshore Wind Research into the Environment (COWRIE) workshop on cumulative impact to birds (Norman et al. 2007)
 - Primary conclusion = could not agree upon a definition of cumulative impacts
 - Let's try and avoid that!

- What is the challenge?
 - It is undefined
 - There are no boundaries
 - It is a concept within which we place our collective concerns
 - We each approach it based upon our professional and personal background
 - I'm a bird person
 - I'm interdisciplinary
 - Impacts, effects, adverse, negative, positive?
 - Cumulative adverse effects

What type of problem?

Linear

- Cause is well known
- Negative effects are known, low uncertainty.

Complex

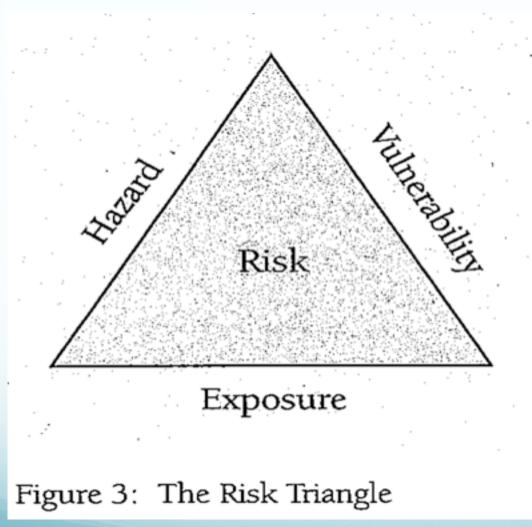
- Difficulty of identifying and quantifying causal links.
- Have synergisms, antagonisms, positive and negative feedback loops
- Time delays between the cause and effect
- Individual variation, intervening variables, etc.

Uncertain

- Absence of scientific knowledge that makes it difficult to assess the probability of impacts.
- Result of incomplete reduction of the complexity in modeling cause-effect chains between hazards and adverse effect on a receptor.

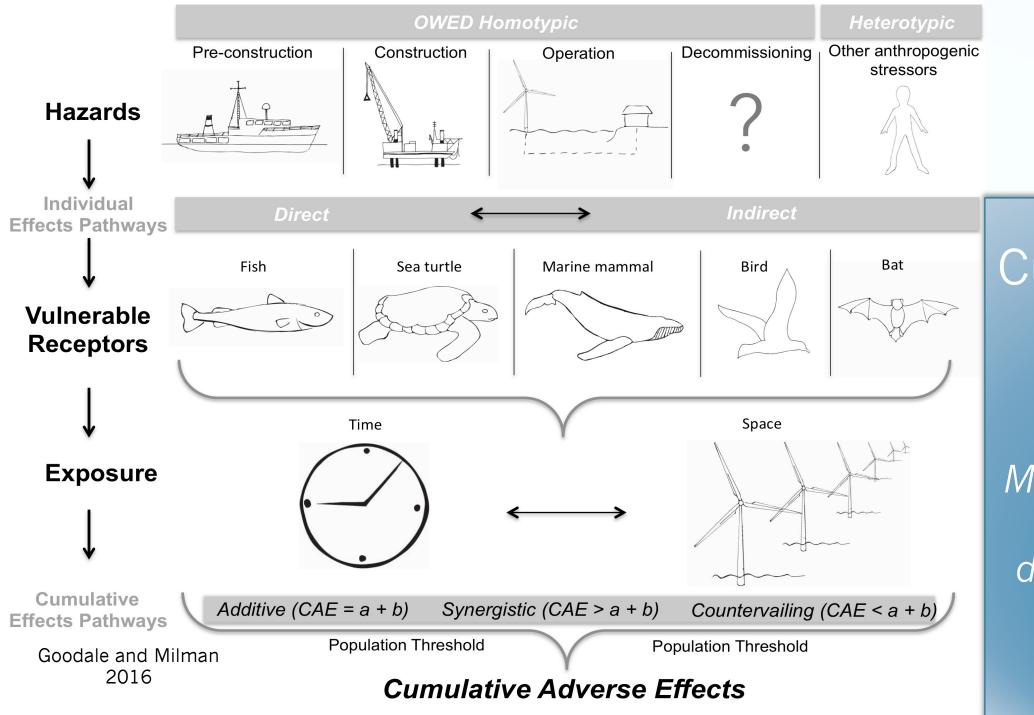
Ambiguous

- Different legitimate viewpoints
- <u>Cumulative adverse effects are linear,</u> <u>complex, uncertain, and ambiguous</u>



Definitions

- It is the accumulation of all anthropogenic actions over time and space
- "Cumulative impact" is the impact on the environment which results from the *incremental impact of the action when added to other past,* present, and reasonably foreseeable future actions (40 CFR §1508.7)
- Cumulative adverse effects is a process through which adverse effects accumulate
- Effect on individuals accumulate to cause population declines
- Assessments are inconsistent partly because of a lack of clear framing



What are Adverse Effects?

- Hazards: physical changes to the environment
- Vulnerability: documented sensitivity to hazards
- **Exposure**: present in a development area
- Adverse effects
 - <u>Direct</u>: mortality and injury; Direct effects are the result of a stimulus response relationship
 - Indirect: a chain of effects pathways that can lead to adverse effects

Cumulative Adverse Effects

Moving from a theoretical discussion to an applied analysis

Scoping

Hazards & Vulnerability

- Hazards
 - Homotypic: offshore wind only
 - Heterotypic: everything else
- Effects pathway
 - Individual: Direct, indirect
 - Cumulative: Additive
- Vulnerability
 - Behavior
 - Physiological
 - Habitat specialization

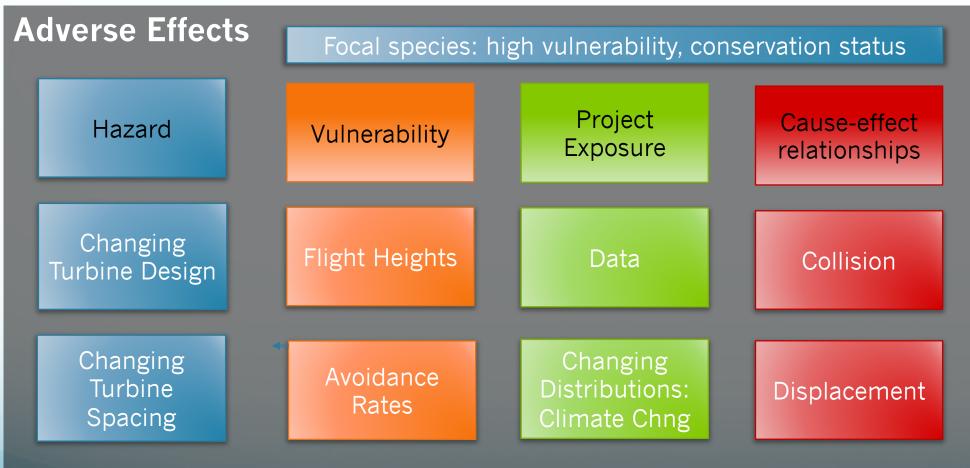
Receptors

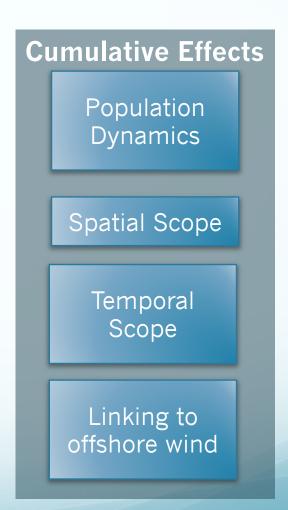
- Which species, groups, or communities?
- Which population?
 - Entire species range?
 - Sub-population?
 - Individual breeding sites?
- Measuring population effects
 - Having clear baseline (status before impacts)
 - Stating a threshold (number of trend?)

Delineating Exposure

Temporal boundaries

- Duration of hazard; species ecology
- Data constraints (extent of of MDAT models)


Spatial boundaries


- Geography: Atlantic OCS
- Ecological
 - Species range
 - Ecological regions
- Political & Planning Areas
 - BOEM Wind Lease Areas
 - US Federal Waters
- Engineering
 - Basic wind development constraints

Kilometers

Birds example

Things to consider in developing a research agenda

- Be aware of the blind researchers and the cumulative elephant
 - Researcher background, research focus, taxonomic focus, and training
- Be very specific with definitions and assumptions
- Define a tight scope for research
 - Try and avoid the "but what about . . ." spiral
- Recognize scopes may vary significantly from species to species
- Define needs to model the future AND needs to collect empirical data today
 - Modelers can help define parameters (e.g., PVA); field researchers can collect data
- Identify technological constraints in understanding adverse effects
- Focus on small bites, and not trying to answer the ultimate question

Thank you!

Wing_Goodale@briloon.org (207) 807-8750

